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Multivariate classifiers have become an in-
creasingly popular analysis tool for fMRI ex-
periments. 
We describe how nuisance signals (head 
motion, respiration) can greatly inflate classifi-
cation performance in such analyses.
We present two ways of controlling for these 
confounds, and evaluate their usefulness.

Voxel Selection
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Nuisance signals 
create an artifact 
even when they 
are random. 

This will lead to 
false positives.  

When stimulus 
affects head 
position or 
breathing  
systematically, 
the problem 
becomes worse.

Linear regression creates a bias in the null distribution which 
gets bigger with increasing regressor/stimulus correlation.
Regressing out the class labels equates the signal mean 
between classes. With m-in-n crossvalidation:

(n-m) * TRA + m * TEA = (n-m) * TRA + m * TEB

TEA-TEB = (n-m)/m * (TRB-TRA)

Even after correcting for this change in performance mean, 
false positives and false negatives occur.

Different voxels receive different amounts of artifact. 
Excluding voxels with large and/or strongly correlated 
nuisance signals might avoid performance biases.

Mutilvariate classifiers, exemplified here by 
support vector machines, are biased by 
random nuisance signals, such as head 
movement, respiration or heartbeat.

Many kinds of stimulus (eye movements, reti-
nal motion, emotional, attentional) introduce 
systematic correlations between head motion 
and the stimulus class, compounding the 
problem.

Uncorrected, these problems inflate per-
formance and create false positives.

The standard approach of linear regression 
used in GLM is problematic in SVM. While 
biases introduced to the null distribution can 
be compensated for in binary problems, the 
strong decorrelation of performances indi-
cates high rates of false positives and nega-
tives. For multi-class problems there is no ob-
vious way to account for the distribution bias 
and regression can not be used at all.

Voxel selection based on the amount of arti-
fact received appears to be a promising tech-
nique for control of nuisance artifact.

Selecting only voxels 
where the 
nuisance/stimulus 
correlation is below 
0.2 eliminates the 
artifact for magnitude 
groups C and D. 

Reducing the 
threshold to 0.1 adds 
no clear further 
benefit.

This holds true across 
a range of numbers of 
time points and 
voxels.

This distribution bias occurs across different numbers of voxels 
and time points. Low correlations show an upward shift.
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