



### INTRODUCTION

- To achieve stereopsis, the brain must search for matching images on the two retinas—a complex task.
- Geometry restricts the matches to epipolar lines; if the brain could locate these lines, its search would be simplified.
- But epipolar lines move on the retinas when the eyes move, so locating them would require the brain to keep track of eye position.



- Stereopsis can work without motor or proprioceptive information about eye position.
- But the retinal images themselves contain eye-position information; e.g. if the images are cyclorotated, the eyes must be cycloverged.



# Visual perception of impossible geometries: local and global constraints in stereopsis

Kai M. Schreiber and Douglas B. Tweed

CIHR Group for Action and Perception; U. of Toronto; Centre for Vision Research, York U., Toronto

### QUESTION

the search for other matches?

### METHODS

information about eye position.



Disparity fields

Stereograms

Excyclorotated

Globally consistent stimuli



Globally inconsistent

Locally consistent

Does the brain use 'visual bootstrapping': does it use a few matched elements to compute eye position so as to speed

If matching works by bootstrapping, we should have trouble seeing 'impossible' stereograms that contain contradictory



Incyclorotated

Locally inconsistent

# RESULTS

When contradictory information is spatially segregated, stereopsis is unimpaired. When every region of the image contains contradictory information, stereopsis is impaired.





## CONCLUSIONS

- about eye position.

164.15



The brain uses visual information about eye position to constrain stereo matching locally but not globally; i.e.

It doesn't compute a single estimate of eye position that constrains matching over the whole visual scene.

But local interactions in the matching algorithm favour nearby matches that are consistent with local information