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The theoretical horopter is an interesting qualitative tool for conceptualizing binocular correspondence, but its quantitative
applications have been limited because they have ignored ocular kinematics and vertical binocular sensory fusion. Here we
extend the mathematical definition of the horopter to a full surface over visual space, and we use this extended horopter to
quantify binocular alignment and visualize its dependence on eye position. We reproduce the deformation of the theoretical
horopter into a spiral shape in tertiary gaze as first described by Helmholtz (1867). We also describe a new effect of ocular
torsion, where the ViethYMüller circle rotates out of the visual plane for symmetric vergence conditions in elevated or
depressed gaze. We demonstrate how these deformations are reduced or abolished when the eyes follow the modification of
Listing’s law during convergence called L2, which enlarges the extended horopter and keeps its location and shape constant
across gaze directions.
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Introduction

Based mainly on ideas developed independently by Vieth
(1818) and M[ller (1826), the theoretical point horopter
has been devised as a theoretical tool for simplifying
binocular vision geometry. Assuming there exists some
correspondence between retinal loci in the two eyes, one
can ask what object locations in space would project onto
corresponding retinal points. The set of all of these spatial
locations is called the point horopter. Other definitions
have occasionally been used including the haplopia or
singleness horopter, which is the set of points in space that,
empirically, are seen single or fused. Here, we will focus
on an extension of the point and haplopia horopters; for an
account of other types, see the review chapter by Tyler
(1991). With this extended horopter, we can clarify the
influence of eye movements on stereopsis by charting the
changing shape and location of the horopter surface.
To model these changes, we need an optical model of the

eye and a correspondence mapping between the two retinas,
as well as a model of 3D eye movement patterns (see
below). A common, simplifiedmodel of the eye consists of a
single lens with the nodal point located in the center of the
retinal sphere (LeGrand & ElHage, 1980). The nodel point
is assumed to coincide with the center of rotation for eye
movements. Retinal locations can then be specified by their

angular distance from the line of sight, the projection line
from the fovea, independent of the actual shape of the eye.
The simplest assumption for the pattern of retinal

correspondence is that the pairing is between points that
align when the two retinae are superimposed. These
corresponding points then have equal angular distance from
the line of sight in both eyes. Retinal loci that correspond in
this way are sometimes called identical points. We can then
define the horopter as all the points in space that project onto
corresponding retinal loci in this sense.
What does this surface look like? When the eyes are

oriented in parallel, and are looking at a target infinitely far
away, the projections from all pairs of corresponding points
are parallel because they are at equal angles from the parallel
lines of sight. Any two parallel lines will intersect at infinity,
so the point horopter for far viewing is at infinite distance in
all directions.

Eye movements

For fixation on a near target, projection lines in the visual
plane (i.e., the plane containing the two eyes’ nodal points
and the fixation target) will intersect, regardless of the
vergence angle of the two eyes. And as Vieth (1818) and
M[ller (1826) have shown independently, all the inter-
sections of identical points’ projections lie on a circle
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through the fixation target and the two nodal points called
the ViethYM[ller circle.
Above and below the visual plane, intersections exist only

in the midsagittal plane, which is the plane orthogonal to the
baseline (a line connecting the two eyes’ nodal points) and
halfway between them. Any object located in this plane will
be at an equal distance from both eyes, and objects located
outside the plane will be at different distances from the left
and right eyes. The visual elevation angle of an object at a
given height above or below the visual plane scales with its
distance. This means that only objects in the midsagittal
plane can have equal elevation angles and project onto
identical points. In fact, there is only a single line in the
midsagittal plane that projects onto corresponding retinal
points for a converged eye position (Helmholtz, 1867). This
line is orthogonal to the visual plane and intersects the
ViethYM[ller circle and has been called the theoretical
vertical horopter (Howard & Rogers, 2002).
This geometric description of the theoretical horopter is

independent of horizontal eye position within the visual
plane. A change in version will shift the fixation point along
the ViethYM[ller circle, leaving the horopter entirely
unchanged, whereas a change in vergence will change the
radius of the circle, but not the basic geometry. If for
elevated or depressed fixation targets the eyes were to sim-
ply rotate vertically, this would leave all projections un-
changed. The theoretical horopter would still be a circle in
the visual planeVnow tilted with elevationVand a vertical
line perpendicular to it.
But ocular rotations have three degrees of freedom. When

gaze direction is expressed in horizontal and vertical angles,
whether it is in the Helmholtz or Fick coordinate system
(Haslwanter, 1995), there is an additional rotational
component around the line of sight called torsion. In hu-
man eye movements, the amount of torsion is a function of
the gaze angle, a fact known as Donders’ (1848) law. The
actual torsion angle for monocular viewing conditions is
specified by Listing’s law. In its geometrically simplest
form, Listing’s law specifies that at each gaze direction,
the eye is positioned as though that gaze direction had been
reached from a specific primary gaze position by a single
rotation around an axis in a head-fixed plane orthogonal
to this primary position. This plane of axes is called
Listing’s plane. With Listing’s law, primary gaze deter-
mines 3D eye position for all gaze directions. Commonly,
eye positions are expressed in rotation vector form, where
the direction of the vector specifies the axis of rotation
from primary position and its length specifies the rotation
angle. All these eye position vectors will lie in Listing’s
plane as well.
For binocular viewing, a deviation from Listing’s law has

been described (van Rijn & van den Berg, 1993; Mok, Ro,
Cadera, Crawford, & Vilis, 1992). This has been called the
binocular extension of Listing’s law, or L2. In L2, the
torsional angle of each eye depends on both gaze direction
and convergence of the eyes. In terms of the description of
Listing’s law above, the Listing’s plane of eye position

vectors changes with vergence, rotating temporally in each
eye by half the vergence angle. Because primary position is
orthogonal to Listing’s planes, this also means that the
eyes’ primary positions diverge by half the convergence
angle. The resulting pattern of torsion affects the horopter.
Studies of the shape of the horopter for fixation targets

outside the horizontal plane and at finite viewing distances
have been exceedingly rare. The only theoretical analysis
we are aware of is provided by Helmholtz (1867) in his
Treatise on Physiological Optics, where he describes the
horopter for tertiary binocular gaze as a line in the mid-
sagittal plane spiraling around to approach the ViethY
M[ller circle from above, meeting it at the eye’s nodal
point, reemerging in symmetrical fashion from the other
eye’s nodal point, and bending away downward and back
to vertical (see Figure 4). But Helmholtz’s description of
the mathematical reasoning leading him to this description
is impenetrably dense.

The extended horopter

While the theoretical horopter helps clarify binocular
correspondence, its usefulness is limited by the fact that for
almost all eye positions it consists of only two lines. This
restriction clashes with reality, in which binocular fusion is
not limited to such narrow parts of the visual field. And it
restricts the use of the horopter to the mapping of two retinal
major circles, one in the visual plane and the other roughly
vertical on the retina.
We propose to extend the definition of the theoretical

horopter, so that it becomes a full surface in 3D space for
any fixation target. With this surface we will demonstrate
how different oculomotor strategies like Listing’s law and
L2 affect binocular alignment of retinal images.

Methods

All simulations were carried out using Matlab program-
ming environment, Version 6.5 (Release 13).
To construct a point on the classical theoretical horopter,

retinal points in the two eyes are projected out through the
eyes’ nodal points to find the two rays’ point of intersection,
if one exists. This is mathematically equivalent to solving an
equation system (see Appendix). The fact that the horopter
does not exist for most pairs of retinal points in most eye
positions corresponds to the mathematical fact that most
such equation systems have no solution.
They do, however, have approximate solutions, which can

be found using extension of the matrix inversion operator,
called the MooreYPenrose pseudoinverse (Moore, 1920;
Penrose, 1955), which finds approximate solutions to any
system of linear equations. Using this pseudoinverse and
the following procedure, we can find unique points of the
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horopter for any pair of retinal locations, and in any eye
position (see Figure 1). The mathematical fact that this is
an approximate rather than an exact solution reflects the
physiological fact that not only objects projecting onto
corresponding points are seen as single, but so are all
projections in a retinal area around correspondence (i.e.,
Panum’s fusional area).
Using the pseudoinverse to solve the intersection equation,

we obtain the pair of points on the projection rays with the
shortest connecting line. The point of the extended horopter
is located on this connecting line (drawn in red in Figure 1)
so that its projections onto the two retinas have the same
angular distance from the respective corresponding points.
When the two rays intersect, the connecting line has

zero length and H coincides with the actual intersection
of the rays, and thus the classical horopter point. Thus, the
extended theoretical horopter is truly an extension of the
classical theoretical horopter and contains it for any eye
position.
Points that are part of the extended, but not the classical,

theoretical horopter do not project exactly onto the
corresponding retinal points used to determine them. They
are slightly disparate.When we try to quantify this disparity,
we discover a problematic ambiguity in the definition of
retinal disparity. If we start with a mapping of corresponding
points on the two retinas that we define as a having zero
disparity, and then try to define the disparity of a visual
target relative to that zero mapping, there is no unique way

of doing so. This problem in the definition of disparity arises
even within the visual plane whenever the empirical
horopter is not the isovergence line (i.e., ViethYM[ller
circle). We will expand on this problem in the discussion
section.
For practical purposes, we need to decide on some

definition of binocular disparity, even if it cannot be fully
justified theoretically. The most obvious such definition has
disparity measured relative to identical retinal points and
ignores the empirical correspondence mapping for measur-
ing disparities. This, however, would mean that even on the
ViethYM[ller circle disparity would not be zero because in
general corresponding points are not identical points. This is
contrary to the common notion of disparity as coding depth
relative to the horopter.
Instead, we here define the disparity of a point of the

extended horopter as the average of the angular differences
in the left and right eye between the projection of this point
onto the retina and the location of the corresponding point
associated with that horopter point (i.e., the average of
hr j cr and hl j cl shown in Figure 1). While the spatial
location of the point on the extended horopter and the dis-
parity vector thus defined are independent of the coordinate
system used, the same is not true for the horizontal and
vertical components of the vector. In our simulations, we
use a retinal Helmholtz (1867) coordinate system, cor-
responding to the epipolar line set for infinite distance
viewing.
This disparity described in Helmholtz (1867) coordinates

can be used to determine the part of the extended horopter
that exceeds some set limit for disparity from the
corresponding points. This can either be achieved by
setting an upper limit to the length of the disparity vector,
or by applying a direction-dependent disparity limit. If the
horopter is thought of as containing all spatial locations at
which objects can be fused, these limits define Panum’s
fusional area. If these fusional areas are based on empirical
data, the extended horopter becomes the haplopia or
singleness horopter (Ogle, 1964).
Finally, to obtain a single, numerical measure of the

quality of binocular alignment, the area of the extended
horopter, as defined above, and as restricted by the disparity
limit, is computed, as projected onto a unit sphere to
compensate for distance (see Appendix for details). For any
given disparity limit, this area then represents the portion
of visual directional space in which objects can be placed
to appear single. For other directions, the minimal retinal
disparity possible will exceed the retinal disparity limit.
This definition allows for the possibility that the pattern of

retinal correspondence might be gaze dependent. But
because Hillis and Banks (2001) have demonstrated
convincingly that earlier reports of changes in retinal
correspondence with changes in vergence can be explained
by various confounding factors, and that when they
controlled for these factors they found no evidence for
such changes, we assume correspondence to be fixed for all
simulations presented here.

Figure 1. Retinal correspondence. When the eyes fixate F, the

classical theoretical horopter is the ViethYMüller circle (the black

curve). Given any pair of identical retinal loci in the visual plane (e.g.,

vl and vr), their projection rays (green) will intersect on the circle

(e.g., at point V). But when the pair of corresponding identical loci

(cl and cr) lies outside the visual plane, or for nonidentical

corresponding point pairs in general (c l and cr), the projection rays

(cyan) do not intersect anywhere. We define the horopter point H

for such correspondence pairs to be on the shortest connecting line

between their two projection rays. H is located such that its retinal

projections (h l and hr) are equidistant from c l and cr; that is, the

distance d(cl j hl) = d(cr j hr), although the difference vectors c l j

h l and cr j hr usually differ in direction.
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Results

This extended horopter is quite versatile, in allowing
irregularly shaped Panum’s areas as well as arbitrary
patterns of retinal correspondence. We will start this
discussion with one of the simplest cases, correspondence
between identical points, and any disparity limits applied
will be constant across the retina and uniform in direction,
that is, the restriction will be placed on the length of the
disparity vector, independent of its direction and its location
on the retina.

Effects of gaze and ocular torsion

Using the above definition, we obtain the extended
horopter surface for a gaze position straight ahead, at a
vergence angle of 20 deg (see Figure 2). The surface color
represents the length of the disparity vector for each point
(see Figure 3). Clearly visible are the ViethYM[ller circle
and the classical vertical horopter in black, representing
zero disparity. The small inset in all the horopter figures
shows the same extended horopter restricted to disparities

of 0.5 deg or less, emphasizing the classical theoretical
horopter contained within the extended one.
Changing gaze direction to a tertiary position and leaving

vergence unchanged at 20 deg, the horopter’s shape changes
dramatically, as shown in Figure 4. The zero disparity lines,
denoting the classical theoretical horopter, now show the
spiral shape as originally described by Helmholtz (1867).
Even if gaze is kept central horizontally, only elevating or

depressing the eyes in symmetrical vergence, the horopter
changes. Figure 5 shows the horopter at a gaze elevation of
40 deg to better visualize the changes. The ViethYM[ller
circle is tilted out of the visual plane, and back toward the
horizontal plane.
Both the spiral shape in Figure 4 and the vertical tilt in

Figure 5 are not due simply to the change in 2D gaze
direction. If the eyes were simply to rotate around the

Figure 2. The horopter when the eyes fixate a target in the

midsagittal plane at eye level and the vergence angle is 20 deg.

Dragwith yourmouse to rotate and see the 3D shape of this surface.

Units for all three axes in this and all other figures are in centimeters

with the origin located in the center of the right eye. The dashed

green line represents the straight-ahead direction.

Figure 3. Color scale for the horopter plots. The scale ranges from

0 deg (black) to 10 deg (white) of retinal disparity.

Figure 4. The horopter for Listing’s law, with gaze at 15 deg

eccentricity both horizontally and vertically, and at a vergence angle

of 20 deg. Note the bent shape of the black region of zero disparity,

corresponding to Helmholtz’s (1867) description.
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interocular axis to an elevated position at constant
vergence, the projection geometry would not change at
all, and the ViethYM[ller circle would stay in the visual
plane. Isovergent horizontal gaze movements then would
have the same effect at any gaze elevation and not change
the horopter shape or position.
The deviations depicted in Figures 4 and 5 are due to

ocular torsion. Specifically, the eyes have been rotated
according to Listing’s law in producing both figures. The
torsion produced by Listing’s law is necessary to obtain the
spiral horopter described by Helmholtz (1867), and it also
produces the horopter tilt in Figure 5. This tilt is due to the
cyclovergence component of Listing’s law in symmetrical
gaze, as described by Howard and Rogers (2002).
When the eyes move according to L2 instead of Listing’s

law, the resulting pattern (shown in Figure 6) is that of
Figure 2. In other words, the torsion prescribed by L2
keeps the classical theoretical horopter a circle in the visual
plane and a vertical line in the midsagittal plane, making
its basic shape invariant across gaze movements.
Figure 7 shows the retinal disparity pattern for a tertiary

gaze direction, both for Listing’s law and L2, and it
illustrates how L2 improves alignment.
To quantify the difference between Listing’s law and L2,

we computed the size of the horopter with a uniform
disparity limit of 0.5 deg, in units of retinal area, for both

motor programs and across a range of eye positions. This
disparity limit is not meant to reflect the actual extent of
Panum’s area across the retina. Rather, we chose its size
such that significant parts of the visual field would not have
an associated horopter point. This allowed for the difference
between the motor programs to have a clear effect on the
extent of the horopter. This does not mean that for larger and
more realistic sizes of Panum’s area the type of oculomotor
control does not make a difference, but rather that the
advantage of smaller disparities for vision enabled by tor-
sional changes would not be captured by the horopter size
measure if all disparities were to fall below Panum’s limit.
Figure 8 shows a comparison between Listing’s law and

L2 for different gaze directions at a vergence angle of 16
deg. For pure horizontal gaze changes, torsion is the same
for Listing’s law and L2; for pure vertical gaze changes,
whereas Listing’s law produces cyclovergence and L2 does
not, as we have seen, the effect of this cyclovergence is a
tilt of the Horopter out of the visual plane back toward the
horizontal plane. This does not change the size of the
fusable area. Thus, the horopters for L2 and Listing’s law
have the same size for pure horizontal and vertical gaze
directions, but everywhere else the horopter is larger for L2
than it is for Listing’s law. This difference becomes bigger
as eccentricity increases.

Figure 6. The horopter for L2, with gaze at 15 deg eccentricity both

horizontally and vertically at a vergence angle of 20 deg. The region

of zero disparity is the same shape it was in Figure 2.

Figure 5. The horopter for Listing’s law, with gaze at 40 deg

elevation, and at a vergence angle of 20 deg. The horopter’s

geometry is similar to that of Figure 2, but the ViethYMüller circle is

tilted out of the visual plane toward the horizontal plane.
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Figure 9 shows that the advantage of L2 over Listing’s
law for horopter size also depends on vergence and is
biggest in the periphery of the visual field. We plot the
horopter size ratio, averaged across the central T30 deg of
horizontal and vertical gaze. We also included an oculo-
motor strategy in the simulations where ocular Helmholtz
(1867) torsion is kept at zero, and one where Listing’s
planes are tilted between those for L2 and Listing’s law, at
60% of L2.
For far viewing, L2 and Listing’s law prescribe similar

torsion for all gaze angles, but on closer viewing the torsion
angles differ increasingly. This is reflected in a horopter size
ratio of 1 for far viewing, with L2 producing a larger
horopter and better binocular alignment for closer binocular
gaze. Note that keeping Helmholtz (1867) torsion constant
at zero, always aligning the retinal horizontal meridians
with the visual plane has no advantage over L2 in terms of
horopter size. With such alignment, the horopter size is
limited by the mismatch of epipolar line geometry in
tertiary parts of the visual field that is brought about by
vergence. This misalignment cannot be corrected by any
torsional eye movement, and it outweighs the additional
disparities created by cycloversion.
It has been reported repeatedly that human eye move-

ments do not actually follow L2 precisely (Mok et al., 1992;

Figure 7. Retinal disparity patterns in tertiary gaze. Plots are in

retinal Helmholtz (1867) coordinates. Shown is a grid of identical

retinal corresponding points (red x’s), and for each location in this

grid, projections of the horopter point onto the left (green circles)

and right retinas (red circles). Fixation is at 20 deg vergence and

15 deg up and to the left. The fovea is marked with a filled red

circle. In the grey zones, disparity falls below a 0.5 deg uniform

limit. (A) Pattern for Listing’s law, corresponding to the horopter

shown in Figure 2. Note the zero disparity lines forming the spiral

shape and the gradient in vertical disparity. (B) Pattern for L2,

corresponding to Figure 6. Disparities are smaller overall than in

panel A. The zero disparity lines form a cross straight ahead.

Because L2 produces a small amount of Helmholtz (1867) cyclo-

version, the ViethYM[ller circle does not project onto the horizontal

retinal meridian. It does, however, lie in the visual plane.

Figure 8. Size ratio between the horopter for Listing’s law and L2,

depending on gaze direction, at 16 deg of vergence. The disparity

limit used to restrict the horopter size was 0.5 deg of uniform retinal

disparity.
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Tweed, 1997; van Rijn & van den Berg, 1993). While eye
movement vectors fall on Listing’s planes, their rotation
differs from both that prescribed by Listing’s law and L2. It
has been argued (Schreiber, Crawford, Fetter, & Tweed,
2001) that the actual angle of rotation of Listing’s planes
with vergence strikes a compromise between the motor ad-
vantages associated with Listing’s law, and the improve-
ment of binocular image alignment L2 brings about. Figure 9
shows a horopter size plot for an intermediate oculomotor
strategy, where Listing’s planes rotate approximately 60%
(for exact description, see Methods section) of the angle
required for L2, indicating that any rotation of Listing’s
planes will result in an increase in horopter size, with
maximum effect for pure L2.
This increase is mainly due to a decrease in Helmholtz

(1867) cyclovergenceVbinocular eye positions conform-
ing to L2 have no Helmholtz cyclovergence at all. Because
Helmholtz torsion represents a rotation relative to the vi-
sual plane, minimizing cyclovergence brings the two eyes
into torsional alignment relative to the visual plane, and
thus relative to the visual world.

Nonidentical correspondence

The classical horopter is usually based on the assumption
of identical retinal points, leading to the geometry of the
ViethYM[ller circle described above. It is well known,

however, that the empirical horopter does not have the shape
of the ViethYM[ller circle, and empirical retinal corre-
spondence does not pair up identical retinal points (Ames,
Ogle, & Gliddon, 1932; Ogle, 1964). For locations within
the visual plane, the deviation of the empirical horopter’s
shape from the ViethYM[ller circle indicates a retinal
compression of corresponding points on the temporal side
relative to the nasal side. This is called HeringYHillebrandt
deviation. It is characterized by a single parameter, the
abathic distance, which is the fixation distance at which
the empirical horopter becomes a straight line within the
frontoparallel plane (Howard & Rogers, 2002; Ogle, 1964).
Outside the visual plane, the empirical vertical horopter

reveals a tilt such that its top part slants away from the
observer, consistent with a horizontal shear of correspond-
ence relative to identical points (Helmholtz, 1867).
Not much is known about the empirical pattern of retinal

correspondence outside the primary meridians of the eye.
Ledgeway and Rogers (1999) used the apparent motion
of extended lines to map retinal shear and argued that there
is evidence for uniform horizontal shear of the vertical
meridians up to at least 16 deg of eccentricity. It is un-
clear, however, how these results are related to point corre-
spondence and whether their measurements can be
extended into tertiary sectors of the visual field.
To provide a general impression of the effect of these

deviations from exact correspondence on the empirical
horopter, we have generalized both the HeringYHillebrandt
deviation and the Helmholtz (1867) shear pattern to the full
retina by applying them uniformly in retinal Helmholtz
coordinates. The HeringYHillebrandt deviation thus was
implemented by compressing correspondence along retina
fixed great circles that contain the interocular axis when
gaze was straight. A shear of correspondence along the
same coordinate lines was applied to produce Helmholtz
shear. The horopters resulting from these manipulations are
shown in Figures 10 and 11.

Discussion

The expansion of the definition of the classical horopter
has extended it from a tool for visualizing the geometry of
correspondence into a quantitative measure of binocular
alignment, useful for a range of questions concerning the
interaction of eye movements and vision.
We have used this new tool to show why the human

oculomotor system breaks Listing’s law during vergence. It
has been argued that the use of L2 instead of Listing’s law
during near vision improves binocular alignment (Tweed,
1997; Schreiber et al., 2001). This improved alignment
maximizes the benefit of using the epipolar constraint for
the matching problem, without the accompanying cost of
having to compute the gaze-dependent location of the
epipolar lines on the retina (Schreiber et al., 2001).

Figure 9. Absolute (solid lines) and normalized to the size for no

Helmholtz (1867) torsion (dashed lines) horopter size as a function

of vergence angle, for a disparity limit of 0.5 deg averaged over

gaze directions of T30 horizontally and vertically. Shown are

horopter sizes for no Helmholtz (1867) torsion (‘‘No HH’’, blue),

L2 (red), a realistic 60% mix of L2 and Listing’s law (green), and

pure Listing’s law (turquoise). The blue (No HH) plot for absolute

horopter size is obscured by the red (L2) plot, with which it almost

coincides.
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Using the extended horopter, we have shown how the
change from Listing’s law to L2 expands the utility of
binocular correspondence, by keeping the shape of the
horopter similar across eye position changes, and by
increasing the fusable part of visual space for a given dis-
parity limit.
We also demonstrate a rotation of the classical theoretical

horopter out of the visual plane with targets in the midsag-
ittal plane when the eyes follow Listing’s law (Figure 5).
We have shown that L2 eliminates this rotation.
This realignment of the retinal images by changes in

ocular torsion has significance beyond simple matching
alignment. Current models of stereoscopic slant perception
(Backus, Banks, van Ee, & Crowell, 1999; Banks, Hooge,
& Backus, 2001) use vertical disparity signals, in the form
of the vertical size ratio (VSR) or the gradient of vertical
disparities, as a cue to slant. In eccentric gaze, Listing’s
law changes cyclovergence for both vertical and horizontal
eye position changes. A change in cyclovergence creates a
gradient of vertical disparities along the horizontal retinal
meridian, and a gradient of horizontal disparity along the
vertical meridian. These gradients complicate the interpre-
tation of the overall disparity field, but they could also be
used to determine the viewing situation and compute an

azimuth signal. Backus et al. (1999) explicitly ignored the
effects of ocular torsion in their study of slant about a
vertical axis. Banks et al. (2001), on the other hand, looked
at signals influencing the perception of slant about a
horizontal axis and found that ocular torsion is not taken
into account at all.
If the eyes follow L2 instead of Listing’s law, Helmholtz

(1867) cyclovergence is kept at zero for all gaze directions
and vergence angles. This explains why cyclovergence
does not have to be taken into account for perceiving slant
about a horizontal axis, and it also justifies ignoring torsion
in models of azimuth estimation and slant perception. In
effect, the motor system driving the eyes assures that the
visual system can rely on the simple assumption of zero
cyclovergence.
This motor strategy then is what makes it possible for the

visual system to ignore ocular torsion in its perceptual
computations. For this strategy to work, the motor program
needs a mechanism to keep itself calibrated. It has been
demonstrated recently that the control of ocular torsion can
indeed be changed by a cyclodisparity stimulus (Maxwell,
Graf, & Schor, 2001; Maxwell & Schor, 1999; Schor,
Maxwell, & Graf, 2001). This suggests a view where
ocular torsion programs are dynamically controlled to
optimize binocular image alignment and simplify the
calculations necessary for veridical slant perception.
There are at least two further theoretical considerations

arising from the work presented here.

Figure 11. The horopter with a vertical shear deviation froma pattern

of identical corresponding points. Gaze is straight ahead at a

vergence of 10 deg.
Figure 10. The horopter with aHeringYHillebrandt deviation. Abathic

vergence is at 3.7 deg, corresponding to an abathic distance of

1 meter. Gaze is straight ahead at a vergence of 10 deg. Note the

flattening of the horopter surface relative to Figure 2.
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As we have stated in the methods section, the attempt to
define a disparity vector for each horopter point relative to
its pair of corresponding points reveals a weakness in the
concept of retinal disparity. This weakness disappears for a
situation of identical corresponding points, but for any other
empirical pattern of retinal correspondence there is no
unambiguous definition of absolute disparity relative to that
pattern. Specifically, suppose C is the transformation
producing the coordinates of retinal point R in the right
eye corresponding to point L in the left eye, that is,
R = C(L). For an object O in space that projects onto ol
and or in the left and right eyes, respectively, there then
exist two equally appropriate retinal disparities relative to
the correspondence mapping in the two eyes, namely,
dl = ol j Cj1(or) for the left eye and dr = or j C(ol) for the
right eye. If C is an identity mapping, that is, if correspond-
ing points are identical points, these two definitions coincide
except for sign and represent the common definition of
retinal disparity as the difference in visual angle between
the two projections. But for general correspondence func-
tions C, the two eyes’ disparity vectors differ in size and
direction. In other words, there is no unambiguous retinal
disparity relative to nonidentical retinal mapping.
We have avoided this theoretical problem here by

defining disparity as the average of the two eyes’ disparity
vectors. Furthermore, as long as disparity direction is
ignored (i.e., as long as Panum’s areas are isotropic around
corresponding points), our definition of horopter points
ensures that the disparity vectors have the same length in
either eye. More work is needed to determine the implica-
tions of this ambiguity for the concept of retinal disparity as
a physiological signal used in the visual system.
Secondly, the use of a disparity metric in the definition of

our extended horopter implies a retinal coordinate system
for measuring the length of this disparity vector and for
constraining it to a fusional zone. While the shape of our
extended horopter, that is, the location of its points in space,
is independent of the coordinate systems used in describing
either eye movements or retinal locations, the same is not
true for the disparity vectors. The value of their length and
the meaning of their components, that is, which directions
from a corresponding point we will call horizontal and ver-
tical, depends on the retinal coordinate system used. What
is the correct coordinate system then?
Horizontal and vertical disparities are thought to code

different aspects of the geometry of the visual scene. This is
based on the geometrical fact that target motion in depth
results in the shift of its retinal projections along epipolar
lines. For static eyes, this means that the depth of objects is
coded as a retinal disparity in a certain retinal direction.
Disparities in the orthogonal direction cannot change for
real targets at all (ignoring added lenses and equivalent
distortions). Eye movements change the arrangement of epi-
polar lines, sliding and rotating them on the retina. In

general, an object’s projections that fall on the epipolar
lines for the current eye position will not fall on the
epipolar lines for a different eye position. While there is
ample evidence for differential processing of horizontal
and vertical disparities, the retinal coordinate system in
which these signals are coded and whether that coordinate
system is static or changes with eye position is presently
unknown.
A related further empirical question raised by our

empirical horopter is the shape and extent of Panum’s
fusional areas across the retina. Foveally, the limits for
stereomatching have been reported to be nonuniform on the
retina (Stevenson & Schor, 1997), with horizontal disparity
limits being about 1 deg and vertical limits about 0.5 deg.
These limits, when measured for a given spatial

frequency, are independent of retinal eccentricity (Schor,
Wood, & Ogawa, 1984; Wilson, Blake, & Pokorny, 1988),
but they scale with the spatial period of the stimulus for
spatial frequencies lower than 2.5 cpd (Schor et al., 1984;
Schor, Wesson, & Robertson, 1986). The upper cutoff spa-
tial frequency of the visual system decreases with retinal
eccentricity, falling below 2.5 cpd for eccentricities above
10 deg. By this reasoning, Panum’s area is constant out to
10 deg and then increases with larger retinal eccentricities,
in proportion to the period of the spatial frequency cutoff.
For our simulations, however, we chose uniform and

constant disparity limits instead, partly because the direction
for vertical disparities would be unclear in the periphery
because of the coordinate system problem described above.
More importantly, had we increased the size of Panum’s
area with eccentricity, this increase in the disparity limits
would have more than matched the increase in retinal
disparity at eccentric retinal locations. This means that there
would have been a horopter point projecting within Panum’s
area everywhere, and the extended horopter would have
covered all of the visual field. This would have made it
impossible to compare the size of the fusable surface across
eye movement patterns.
But even when every part of the visual horopter surface

is fusable, stereo acuity is reduced as the stimulus moves
away from perfect correspondence (Badcock & Schor,
1985), meaning that larger disparities are detrimental to
perception even if they fall within Panum’s area. So
regardless of the size and shape of Panum’s area, there is
value in reducing retinal disparity by using L2 rather than
Listing’s law.

Appendix

The pseudoinverse. To obtain the classical point horopter
from a map of corresponding retinal locations, we intersect
the projection rays from corresponding point pairs. The
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intersection, if it exists, is part of the horopter. Mathemati-
cally, this means solving the vector equation,

a1
!
p1 ¼ a2

!
p2 þ

!
i ; ð1Þ

for the ai, where pi are the two eyes’ projection vectors and
i is the interocular vector. For our simulations, we assumed
an interocular distance of 6 cm. This equation has no
solution for many pairs of projection rays, reflecting the
fact that most of them do not intersect at all. If we rewrite
this equation in matrix form as

Mð a1
ja2 Þ ¼

!
i ð2Þ

with

M ¼ ð !
p1

!
p
2
Þ; ð3Þ

we can solve it by multiplying both sides in Equation 2
from the left with the inverse of M,

ð a1
ja2 Þ ¼ Mj1 � !

i : ð4Þ

The nonsquare matrix M is not invertible, but Moore
(1920) and Penrose (1955) independently introduced a gen-
eralized matrix inverse for solving this type of problem. This
inverse exists for any matrix, including nonsquare and sin-
gular matrices. It provides the closest solution in the least
squares sense to Equation 2. Geometrically, this produces
a pair of points, one on each projection ray, that is the
smallest possible distance apart in space.
To obtain a unique horopter point, the distance between

these two points was then bisected such that the bisection
ratio matched the ratio of the distance of the bisector from
each eye’s projection center. This assured that the angular
distance of the horopter projection from the corresponding
point was the same in each eye.
Eye movements. The effect of eye movements on corre-

spondence and the horopter was modeled by obtaining the
projection vectors for the corresponding rays for the eyes
pointed straight ahead, and then rotating them according to
the motor program used. These rotations were carried out in
Helmholtz (1867) angles; thus, the projection vector with
the eyes rotated on target was obtained from the one for
straight gaze by rotating torsionally, horizontally, and
vertically, in that order:

ps ¼ MvMh Mt po : ð5Þ

These spatial projection vectors in space were then solved
using Equation 2.

Listing’s law was implemented by having each eye’s
Helmholtz torsion depend on its horizontal and vertical
position:

tl;r ¼
hl;r v

2
: ð6Þ

For L2, a similar formula was used, but instead of the
individual eye’s horizontal angle, horizontal version was
used by adding or subtracting half the vergence angle g
from the horizontal position, producing identical torsion in
both eyes.

g ¼ hrjhl
2

tl;r ¼
ðhl;r T gÞv

2
¼ ðhl þ hrÞv

4
: ð7Þ

The 60% mix of Listing’s law and L2 was defined as

tl;r ¼ j
ðhl;r T 0:6gÞv

2
: ð8Þ

Retinal area. We first determined for which of the points
in a regular Helmholtz (1867) grid of corresponding points
the horopter point would fall within a fusable distance
from the correspondence. The total retinal area covered by
the horopter was then calculated from this subset of corre-
sponding points by summing the areas of grid patches cen-
tered on these dots and subtending the grid spacing angle in
the horizontal and vertical direction:

A ¼ ~
i
ðsin hi þ

s

2

� �
j sin hij

s

2

� �Þs ; ð9Þ

where h is the horizontal position of each corresponding
point and s is the grid spacing.
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